928

1IEICE TRANS. INF. & SYST., VOL. E81-D, NO. 8 AUGUST 1998

PAPER

Robustness to Noise of Associative Memory
Using Nonmonotonic Analogue Neurons
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SUMMARY In this paper, dependence of storage capacity of
an analogue associative memory model using nonmonotonic neu-
rons on static synaptic noise and static threshold noise is shown.
This dependence is analytically calculated by means of the self-
consistent signal-to-noise analysis (SCSNA) proposed by Shiino
and Fukai. It is known that the storage capacity of an asso-
ciative memory model can be improved markedly by replacing
the usual sigmoid neurons with nonmonotonic ones, and the
Hopfield model has theoretically been shown to be fairly robust
against introducing the static synaptic noise. In this paper, it is
shown that when the monotonicity of neuron is high, the storage
capacity decreases rapidly according to an increase of the static
synaptic noise. It is also shown that the reduction of the storage
capacity is more sensitive to an increase in the static threshold
noise than to the increase in the static synaptic noise.

key words: nonmonotonic neuron, static synaptic noise, static
noise in the threshold, storage capacity, SCSNA

1. Introduction

The Hopfield-type associative memory model[1] has
an advantage of having a simple structure but has a
disadvantage of low storage capacity (ac = 0.14) [2].
Recently, however it has been shown that the storage
capacity of an associative memory model can be im-
proved markedly by replacing the usual sigmoid neu-
rons with nonmonotonic ones{3]. Yoshizawa et al.[4]
showed that the storage capacity of an associative mem-
ory model with optimal nonmonotonicity is ac = 0.4,
which is approximately three times as large as that of
the Hopfield model. On the other hand, the Hopfield
model has theoretically been shown to be fairly robust
against introducing static synaptic noise or nonlinear-
ity of synapse[5]. In the Hopfield model, if synaptic
weights are quantized into two levels (+1), the storage
capacity still remains at approximately o =~ 0.1.

In this paper, a piecewise linear model of the non-
monotonic neuron is adopted [ 6], and the storage capac-
ity of an associative memory model using the nonmono-
tonic neurons with two types of noise, that is, static
synaptic noise and static threshold noise, is shown the-
oretically by means of the self-consistent signal-to-noise
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analysis (SCSNA) proposed by Shiino and Fukai[7],
[8].

2. Model

The two types of noise are considered, the static addi-
tional synaptic noise and the static noise in the thresh-
old.

We begin by formulating a recurrent neural net-
work with N analogue neurons to show how the SC-
SNA is applied to the network. The network dynamics
are written in terms of internal potential v variables as

N

d
Eui = —u; + Z Jijz; + 6,
JFi

where 6; is the static noise in the threshold, which must
have O(1) in order to be signified as noise. The variable
z; denotes an output of the i-th neuron. The internal
potential v variables are assumed to be connected with
each other through the synaptic weights J;; of a form

1, L
Jﬁ:;vgga%f+@ﬁ i+, 3)

where the first term in the right-hand side (rhs) cor-
responds to the correlation type learning. The static
synaptic noise denoted by 6;; in Eq.(3) is a random
variable following the Gaussian distribution with mean
0 and variance A% /N

A2
§ij ~ N (0, —J) ,

N bij = bji. C))

In the present paper, the symmetric weight case, i.e.,
Ji; = J;i, is considered. Note that the variance of noise-
less synaptic weights of the first term in the rhs of Eq. (3)
is O(1/N). Therefore, the variance of the synaptic noise
must be scaled by 1/N for the former and the latter to
have the same order. Let us denote the p sets of random
vectors to store by & (u=1,2,---,p, i =1,2,---,N),
where each element £!' is an independent random vari-
able taking a value of 1 or —1 with probability

Ple = +1] = . 5)
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Fig. 1 Piecewise linear nonmonotonic output function.

Loading rate « is defined as ratio of the number of
memory patterns p to the number of neurons NV, that is,
p=aN.

The overlap between the p-th memory pattern {£/}
and the network state {z;} is now defined as

N
1
mﬂ=NZ§;‘mJ~, p=1,--,aN. (6)
j=1

In the case that the output function F(-) is set to the sign
function sgn(-), the overlap m,, represents the direction
cosine between the memory pattern {£/} and the net-
work state {z;}. The equilibrium of the dynamics (1)
is obtained by setting du;/dt = 0. The equilibrium in
which the only first pattern is retrieved, i.e., m; = O(1)
and m, = O(1/v/N), where p = 2,3,.--,aN, shall
be our focus. In this paper, we use the following odd
function F'(-) shown in Fig.1 as an output function

—qu—1,  —0<u<0,
1
F(u) = —Zu+1, O<u<®, M
0, otherwise.

In this paper, we use 1/6 as a parameter representing a
degree of nonmonotonicity. In the case of 1/8 — 0, the
output function F(-) in Eq.(7) converges on the sign
function sgn(-).

3. Results
3.1 SCSNA

The internal potential u; of each neuron in the equilib-
rium state is represented by the weighted sum of outputs
from the other neurons. The SCSNA has its basis in
the systematic splitting of the internal potential into a
signal part and a cross-talk noise part. Moreover the
cross-talk noise part consists of two parts in the frame-
work of the SCSNA. One is an effective self-coupling
term, which comes from statistical correlations caused
by the recurrent connections, the other obeys the Gaus-
sian distribution with mean 0 and variance ar. The
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following results are obtained for any odd output func-
tion F'(-)

m= /_O; j%exp (—%) Y(z), (8)
q= /_C: \;% exp <—§> Y(2)?, )
U— %/: % exp (—i;) Y (2), (10)
Y(z) = F(m+TY(z) +0z), (11)
oo "
r= iij‘_U—U + AU (13)

o= /or+A%q+ A2, (14)

where Y'(z) is an effective output function of each neu-
ron obtained by solving Eq.(11), m is the overlap for
the target pattern {£}} defined in Eq.(6), ¢ is the so-
called Edwards-Anderson order parameter, U is a kind
of the susceptibility, which measures sensitivity of neu-
ron output with respect to the external input, r repre-
sents enhancement of the cross-talk noise caused by the
recurrent connections, I'Y (z) denotes the effective self-
coupling term, and o2 is the variance of the noise obey-
ing the Gaussian distribution. According to the SC-
SNA, the macroscopic description of any microscopic
state can be represented by the three order parameters of
m,q, and U. The storage capacity can be calculated by
solving Eqs. (8)—(14) self-consistently as follows. These
equations are solved numerically. There is a transition
at @« = ac. When the loading rate « is below g,
Egs. (8)—(14) have a nontrivial solution with m + 0.
On the other hand, if « is above ¢, only the trivial
solution with m = 0 exists. This critical value cc is the
storage capacity. Derivation of the above-mentioned or-
der parameter equations from Egs. (8) through (14) is
given in Appendix.

3.2 Effects of Static Synaptic Noise

In this section, we set A, = 0. The dependence of stor-
age capacity ac on the static synaptic noise Ay and the
nonmonotonicity 1/6 is shown. Figure 2 illustrates the
relationship of a¢ against Ay for some fixed nonmono-
tonicity values 1/6 = 0.0,0.1,---,0.5. As mentioned
before, the conventional monotonic model corresponds
to 1/6 = 0. The choice 1/6 = 0.5 gives the highest
nonmonotonicity, since the storage capacity obtained
by the SCSNA for the noiseless case Ay = 0 tends
to be larger than the actual values obtained by com-
puter simulation for 1/6 > 0.5[6]. Figure 3 illustrates
the relationship of ac against 1/6 for some fixed static
synaptic noise values Ay = 0.0,0.1,---,0.6. One may
think that the storage capacity of the highest nonmono-
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Fig. 2 The storage capacity ac and static synaptic noise Ay
for fixed 1/0 (Ap = 0).
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Fig. 3 The storage capacity . and nonmonotonicity 1/6 for
fixed Ay (Ap =0).

tonicity 1/0 = 0.5 does not coincide with the result
of Yoshizawa et al.[4], where the storage capacity is
ac = 0.4. The reason is difference of their output func-
tions. A piecewise linear model discussed by Yoshizawa
et al. can be analyzed by the SCSNA and the results
coincide with each other[9],[10]. The following results
shown in the present paper do not depend on detailed
shape of output function qualitatively.

In the case of the Hopfield model, i.e., 1/6 = 0,
the susceptibility U is always positive. In the case of
the nonmonotonic model, however, U may be nega-
tive in the retrieval phase; therefore, the variance of
effective noise o2 decreases more than in the Hopfield
model. Hence, the storage capacity of the nonmono-
tonic model increases. In Fig.2, the storage capacity
vanishes at Ay ~ 0.8 for all nonmonotonicity values.
This is because, noting that r is proportional to ¢, ar
in o (Eq.(14)) can be neglected if A is large.
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Fig. 4 The storage capacity ac and threshold noise A; for
fixed 1/60 (Ay =0).
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Fig. 5 The storage capacity a¢ and nonmonotonicity 1/8 for
fixed Ah (AJ = O)

3.3 Effects of Static'Noise in the Threshold

In this section, we set Ay = 0. The dependence of stor-
age capacity ac on the static threshold noise Ay, and the
nonmonotonicity 1/6 is shown. Figure 4 illustrates the
relationship of a.o against Ay, for some fixed nonmono-
tonicity values 1/ = 0.0,0.1,---,0.5. Figure 5 illus-
trates the relationship of ac against 1/6, for some fixed
noise in the threshold values A, = 0.0,0.1,---,0.6.
The storage capacity is more sensitive to an increase
in the threshold noise level than to an increase in the
synaptic noise level. When the nonmonotonicity 1/6
increases, the Edwards-Anderson order parameter ¢ de-
creases. Therefore, the threshold noise is more effective
than the synaptic noise, since A2 is larger than A%g in
the variance of the effective noise o2. These results re-
garding the threshold noise strongly depend on the dy-
namic range of output function. For example if we use
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2F(-) as the output function instead of F{-), the storage
capacity become larger in the case of 2F(-) than in that
of F(-). On the other hand, the property of the storage
capacity on the synapse noise does not depend on the
dynamic rage of out function. Thus, we have restricted
our discussion to the case that the dynamic range of out-
put function is fixed i.e., F(-) < 1. We used some other
kinds of nonmonotonic functions[6], and obtained that
the results discussed here qualitatively hold as long as
the dynamic range of output function is fixed.

4. Conclusion

We have shown the dependence of the storage capac-
ity of the analogue associative memory model with the
nonmonotonic neurons, on the static synaptic noise and
the static noise in the threshold. We derived its SCSNA
order-parameter equations and discussed the influences
of the two kinds of noise on the storage capacity. When
the monotonicity of neuron is high, the storage capacity
decreases rapidly according to the increase of the static
synaptic noise. The storage capacity is more sensitive
to the increase in the threshold noise level than to the
increase in the static synaptic noise level.
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Derivation of the SCSNA—The Case
with the Static Synaptic Noise and the
Threshold Noise

Appendix:

Expressing the internal potential u; in the equilibrium
state in terms of the overlaps (6), we obtain

N
U; = Z Jij:vj + 6;

i#:

= Zf”mﬂ Z(SUCL‘] +6; —

JFi

The output z; can be formally expressed as

(A-1)

z; =F Z&“mu+z&gm3+6
JFi
=F Zg“mﬂ+2%x3+6 :
J¥i

where the function F'(-) will be determined later. The
residual overlap m, = O(1/vV/N), (1 = 2) is obtained
by using the Taylor expansion

my = NZf“F nymy'i_zéz]w] +§

J¥i
| X
N ;@ngm + Umy,
L S )
= b (ks A2
N(l_U)ggzxz (A2)
where
aN N
2 = Zf”mv+ IR
vy V#M#z
aN N
W = ngm,,+ ZZ&H%—{—& ,
vip V#w#z
)
- (e

Similarly, the second term in the rhs of Eq.(A-1) is
expressed as

N
2 bij; =

Z 5y + A2Uw, (A-3)
JFi JF
m§6ﬁ) Zf”m,, + z Sk +6;

k1,5

Using Egs. (A-2) and (A- 3), we obtain
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u; = Elmy + { — +A2U} T + Z,
where Z is the effective noise as follows:
aN N
z: ZZ{'MM (”)+Z6 m(‘s.ﬂ)_l_é'
H 2 ji J¥i

Note that z is a summation of uncorrelated random
variables, with < Z >= 0 and < Z >= ¢2. Thus,

o? =ar+ A%q+ A2,

1 N
= N 2(171)27
=1

aN N
ar = N(l— 222 5# §J (]H)
H=2 ji
__
S (1-u)y

Replacing u; — u, &m; — m, and ﬁ’(u) — Y, and set-
ting z = z/o, Eqs. (8)—(14) are obtained, since we have
discussed the odd function F(-).
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